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A B S T R A C T

The object of this paper is to prove that wavelets are adapted
for the study of other functional spaces (other then L2(�)) as
Lp(�) (1 < p < �), Cs(�) or Hs(�) where s depends of the regularity
of the basis. To realize this object, we prove at first some lemmas
of functional analysis then we characterize some functional
spaces with wavelet series. Wavelet, Vaguelet, Regular lemma,
Sobolev space.
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1. INTRODUCTION

Wavelets are functions generated from one basis function by dilations and
translations. The search for wavelet bases has been an active field for many
years, since the beginning of the 1990’s. The wavelets have cancelation
properties that are usually expressed in terms of vanishing polynomial
moments. The combination of the two previous properties of wavelets
provides a rigorous analysis of adaptative schemes for elliptic problems.
Moreover, nonlinear approximation is an important concept related to
adaptative approximation. The multiscale bases have been existed for a
long time in search of Haar, Franklin and Littlewood­Paley. They are widely
used in many scientific domains as numerical analysis or theoretical
physics. Wavelet method has a great interest in signal and image processing
motivated the development of Euclidean wavelets. The multiscale method
is applied to the gravimetry problem, which is concerned with the
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determination of the earths density distribution from gravitational
measurements (15).

We study in this paper other functional spaces (other then L2(�)) as
Lp(�) (1 < p < �), Cs(�) or Hs(�) where s depends of the regularity of the
basis. The wavelet expansions induce isomorphisms between function and
sequence spaces. It means that certain Sobolev or Besov norms of functions
are equivalent to weighted sequence norms for the coefficients in their
wavelet expansions which have a great flexibility and are easy to
implement. The fondamental idea is to analyze some functional spaces by
using a new notion called vaguelet. The main contribution offered in this
paper is in applications of it results. In fact, this tpoic has many applications
as numerical similation for elliptic problems or image processing, the
reconstruction of the wavelet approximations of the gravitatinal potential
and other important functionals of the gravitational field. Section 2 is
devoted to prove regular lemmas which will be useful for the remainder
of the work.

In section 3, we prove that wavelets are adapted for the study of
functional spaces Lp(�) (1 < p < �), Cs(�) or Hs(�) where s depends of the
regularity of the basis

2. REGULAR LEMMAS

We introduce in this section the notion of vaguelet which is very important
to obtain equivalence norms on some regular functional spaces (Sobolev
spaces). The following lemmas are valid in dimension n but the proofs will
be done in two dimensional case to simplify notations.

Definition 2.1

A family of continuous functions (�
j,k

), j � �, k � � on �, is called a vaguelet
family if there exist constants M, �, � and C such that

supp�
j,k

 � {x � �/2jx – k � [–M, M]}. (2.1)
1

122 (1 2 ) .j
j,k C x k � ��� � � � �����

� �
j,k

(x)dx = 0. (2.3)

1

2
, ,( ) ( ) 2 .

j

j k j kx y C x y
� ���� � �� �� � � � � (2.4)

Remark 2.1: See that vaguelets have the same oscillation and estimations
as wavelets but they are’nt wavelets because we cannot get them by
translation and dilation.
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We have the following result.

lemma 2.1: Let (�
j,k

), j � �, k � �, be a family of vaguelets, then there
exists a constant C such that, for every sequence (�

j,k
) of l2(�x�), we have

� �
1

2 2
, , ,

2
.j jj k j k k j kk

C� � ��
� � � �� � � �� � ��

(2.5)

Proof: Remark at first that

< �
j,k

 , �
j�,k�  > = 0 if , , .

2 2 2 2j j j j

k M k M k M k M� � � �� � � �� �� � � � �� �� �� � � �

Then, there exists a finite number of indexes k� such that < �
j,k

, �
j�, k�  > �

0 and is increased by a constant C. We deduce that,

, ,, , ,, ( ) ( )
2

j k j kj k j k j k j

k
x x dx� � � � � �

� �� �� � � � � � � � � � �� �� �� ��

/ 2

,
2 2

2 2
2j j

j j

k M k M j

k
C x dx

�
��

� �� �
� �� �

� ��
� C�2–(j–j�)(�+1/2).

Next, we write

�
j,k�� 2

(j–j�)1/2� < �
j,k

, �
j�,k� > ��� C(�

j<j 
, 2(j–j�)1/22–(j–j�)(�+1/2)

+ �
j�j� 2

(j–j�)1/22–(j–j�)(�+1/2)2j�–j)

� C���
j�Z 

2–�j–j���

��C�.

We obtain

� �1/ 22 2 ( )1/ 2
, , , , ,, , ,2

2 ,j j
j k j k j k j k j kj k j k j k

��
� �� �� � �

� � � � � � � �� � �� � �

� �1/ 22 ( )1/ 2
, , ,, ,

2 ,j j
j k j k j kj k j k

��
� �� �� �

� � � � � �� �� �

then, it gives the result.

Remark 2.2: We proved the Lemma 2.1 in one dimensional case. We
have the same proof in multidimensional case.

lemma 2.2

i) If g � L2(�2) with compact support then there exists a positive constant
C such that, for every sequence (�

k1,k2
) � l2(�2), we have

� �1 2 1 22 21 2 1 2

1/ 22

1 2, ,
( )

( ,k k k kk k k kL
g x k y k C

� �
� � � � �� � � �� � �

(2.6)
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ii) Moreover, if 2 2
1 1 2

ˆ( , ) ( )g L
�� � � � �  where 0 < � < 1, then there exists a

constant positive C�  such that, for every sequence (�
k1,k2

) � l2(�2), we
have

� � � �1 1 2 2

1 2 1 22 21 2 1 2

1/ 22

1 1 2, ,
( )

ˆ( , )k ik
k k k kk k k k

L

e e g C
� � � � � �� � � � � �� � � �

�
(2.7)

Proof: We assume that supp g � [–L, L] × [–L, L] where L � 1 and for (r
1
,

r
2
) � {0, ..., 4L – 1} × {0, ..., 4L – 1}, we denote

1 2 1 1 2 2

1 2

, 4 , 4 1 1 2 2( , )� �
� �

� � � � � �� �
� �

r r r Lk r Lk
k k

g g x r rLk x r rLk

The distance between the supports of g(x – r
1
 – 4Lk

1
, x – r

2
 – 4Lk

2
) and

g(x – r
1
 – 4Ll

1
, x – r

2
 – 4Ll

2
) where (k

1
, k

2
) ��(l

1
, l

2
) is bigger then 2L. We have

1 2 1 1 2 2

2 2

1/ 22

, 4 , 4 22
.� �

� �� �� �
� �
��r r r Lk r Lk
k k

g g

The property (2.6) is then proved.

Now, we consider ��� L2(�2) and 2 2
1

ˆ ( )
�� � � �L . Then, we have the

equality

22 2

1 1 2 1 2 1 2
ˆ ( ) ( , ) ( , )

�

� �� � � � � � � � � � �� � � � �
dh

d d x y x h y dxdy
h

where

2

1 22

1 1
1

4

��

� ���
�

� �
� � ih dh

e
C h

We write

1 2

2

1 , 1 2 1 2ˆ ( , )
�� � � � � �� � r rg d d

� 1 2 1 2

2

, , 1 2
( , ) ( , )g r r rh L

dh
C g x y g x h y dxdy

h
� � ��

� � �� � �

1 2 1 2

2

, , 1 2
( , ) ( , )g r r rh L

dh
g x y g x h y dxdy

h
� ��

�� � �
�

� � �
= C�(I

1
 + I

2
).

The same property for the supports of g
r1,r2

 used above allows

1 1 2 2

1 2

2

1 4 , 4 1 1 2 2( 4 , 4 )r Lk r Lkh L
k k

I g x r k L y r k L� ��
� � � � � ���� � �
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2

1 1 2 2 1 2
( 4 , 4 )

dh
g x h r k M y r k L dxdy

h
� �� � � � � �

� �1 1 2 2

1 2

2 2 2

4 , 4 1 1 2 1 2

1
ˆ( , ) .r Lk r Lk

k k

g d d
C

�
� �

�

� �� � � � � � �� �
� �
�� � �

The second integral I
2
 satisfies

21 2 1 2

2 2

2 , ,1 2 2

4
2 ( , ) .r r r r Lh L

dh
I g x y dxdy g

Lh
� � ��

� �
�� � �

Then, the Lemma 2.2 is proved.

lemma 2.3: If g belongs to L2(�n) such that:

i) g has a compact support.

ii) �g(x)dx = 0.

iii) g � H�(�n) for � > 0.

If we denote by g
j,k

 the functions g
j,k

(x) = 2j n/2g(2j x – k. Then, for j � � and
k � �n, there exists a positive constant C such that for every sequence (�

j,k
)

� l2(� × �n) and every function f � L2(�n) we have:

���
j�� �k�� n �

j,k
 g

j,k
��

L2(�n)
 � C(�

j�� �k�� n�
j,k

�2)1/2. (2.8)

and (�
j�� �k�� n��g

j,k
��2)1/2 � C�� f ��

L2(�n)
. (2.9)

Proof:

We prove first this Lemma for n = 2. We denote by

1 2

1 2

, , 1 22 (2 ,2 ).j j j
j j k k i

k k

g x k y k
� �

� � � � �� �
� �

We consider 0 < � < 1. Then, there exists a positive constant C such that

� �
2 2 1 2

1 2

1/ 22

, ,( )
ˆ ( , ) 2 .j

j j k kL
k k

C
� � �

� �

� �� � � � � � � �� �
� �

� ��
� �

We have

���gdxdy = 0.

Then, we write

1 2
1 2

,g g g
x x

� �
� �

� �

where g
i
, i = 1, 2, belongs to L2(�2), g

i
 has compact support and 1 2ˆ ( , )i ig� � � �

L2(�2). We conclude from Lemma 2.2 applied to g
i
, i = 1, 2 and � = 1 – �, that

if we denote by
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1 2

1 2

, , , 1 22 (2 ,2 ),j j j
i j j k k i

k k

g x k y k
� �

� � � � �� �
� �

we have

� � � �1 1

1, 2,2 2 2
ˆ ˆ ˆ( , ) 2 ( , ) ( , ,j

j j j

�� �� ���� � � � � � � � � � � � � � � �

1 2 1 2

1 2 1 2

1/ 2 1/ 22 2(1 )
, , , ,2 2 2 .j j j

j k k j k k
k k k k

C C� �� � �� � � �� � � �� � � �
� � � �
�� ��

where C is a positive constant. Then, we obtain, for j � l:

� � � �1 2 22

1 ˆ ˆ ,
4l j l

�� �
�� � � � � � � � � � � �

�

1 2 1 2

1 2 1 2

1/ 2 1/ 22 2

, , , ,2 .j l
j k k l k k

k k k k

C �� � � � � �� � �� � � �
� � � �
�� ��

Thus there exists a positive constant C’ such that

1 2

1 2

1/ 22

, ,

2

.j j k k
j j k k

C
�

� ��� � �� �
� �

� ���
�

We have the same proof for every n � 2. Then the Lemma 2.3 is proved.

3. ANALYZE BY WAVELETS

We recall that the decomposition of a function f in a series of wavelets is
given by

f(x) = �
j,k��( f, �j,k

)�
j,k

(x) = �
j,k��cj,k

�
j,k

(x)

We characterize in this section the spaces Lp(�), Cs(�) and Hs(�). We
have the first result.

Theorem 3.1: Let V
j
(�) be a regular multiresolution analysis and (�

j,k
)

j,k��
the associated wavelet basis. Then, for 1 < p < �, wa have

� �
1

2 2 2
, ,,

~ ( )j k j kp j k
p

f C x
�

�� �

The proof can be deduced from lemmas 2.2 and 2.3.

Definition 3.1

i) A function f belongs to 
o

s
xC  if there exists a polynomial P of degree

lower or equal to entire party of s such that
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f(x) = P(x – x
o
) + 0 (�x – x

o
�s).

ii) f � Cs(�) if f � Cs
xo

 for every x
o
 � � and if 0(x) is uniform in x

o
.

Theorem 3.2: We assume that s � � and that the wavelet � is Cs+1 and
has its first moments null. If we denote:

C
j,k

 = �f(x)�
j,k

(x)dx,

then, we have the following equivalence:

1

2
,( ) 2 .

s j
s

j kf C C C
� �� �� �
� �� � ��

Proof: If f � Cs, we have

�C
j,k

� = ��f(x)�
j,k

(x)dx�� ,( ) ( )
2 j kj

k
f x P x x dx

�� �� � � �� � �� � ��
(because � has some moments null and is fast decreasing)

then

� �

1

2

,

2
2

1 2 2

sj
j k N

j j

dx
C C x k

x k

�

�
� �

� �
�

1 1

2 22 2 .
(1 )

s
s j s j

N

y ds
C C

y

� � � �� � � �� � � �
� � � ��� �

��

Inversely, we assume that

1

2
, 2

s j

j kC C
� �� �� �
� ��

We denote

Q
j
(f) = �

k
C

j,k
 �

j,k
.

We have

��Q
j
( f )����� C2–sj

and

����(Q
j
( f ))����� C2(�–s)j

(due to the localization property of �).

Let x
o
 � �. We denote

( )
0

( )
( ) ( )( )

!
o

j j oj

x x
P x x Q f x

�
�

��

�
� �

��
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and

P(x – x
o
) = �

j�o
P

j
(x – x

o
).

This series converges. Then, if j
o
 is such that

2–jo ���x – x
o
� < 2 2–jo,

we have

� f(x) – P(x – x
o
)���

j�jo
 �Q

j
( f )(x) – P

j
(x – x

o
)��+ �

j>jo
�Q

j
( f )(x) – P

j
(x – x

o
)�.

The first sum is increased by

�
j�jo
�x – x

o
�[s]+1sup���=[s]+1

 ����Q
j
( f )��� ��C �

j�jo
 �x – x

o
�[s+1] 2([s]–s+1)j

The second sum is increased by

� �( )( ) ( )
o

j o jj j a s
C Q f x x Q f

� �
� �� �

� �� �

� �( )
02 2

o

sj j

j j s
C x x

�� � ��
� ��

� � �� �
� C �x – x

o
��.

Proposition 3.1: If f � Hs(�) (s > 0) then we have the following inequality:

2
( ) 2 .s

JS
j HL

f P f C f�� �

Proof: If f � Hs(�), we have the inequality

2 22
,,

(1 2 ) .s
j s

j k Hj k
C C f� ��

Then

2

2 2

,( )J j kL j J
f P f C

�
� ��

22 2
,2 (1 2Js j

j kj J
C�

�
� ��

222 .s
Js

H
C f��

The proposition is then proved.

Proposition 3.2: f � Hs(�) (s > 0) if and only if we have

2 2
,

,

(1 2 )j s
j k

j k

C � � ��

Proof: The first sense results from Proposition 3.1 and the second sense
results from the Bernstein estimate.
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4. CONCLUSION

We studied in this paper other functional spaces (other then L2(�)) as Lp(�)
(1 < p < �), Cs(�) or Hs(�) where s depends of the regularity of the basis. We
proved the wavelet expansions induce isomorphisms between function
and sequence spaces. It means that norms of some functions spaces are
equivalent to weighted sequence norms for the coefficients in their wavelet
expansions.
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